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ABSTRACT

Optical diagnosis could be efficient and reliabjethe exactnalysis of retinal structureShe paper presents an
automated method for the segmentation of retinmbdivessels in retinal images. Algorithm begindwiite enhancement
of vessels by morphological operations, followedesyraction of retinal vascular network by the drajut method. The
proposed method could be used to assist the compigded diagnosis in modern ophthalmology since ghaly of
vascular network is of major interest while in diagis of retinal dsiseases like diabetic retinopatilaucoma and
haemorrhages. The performance of suggested mathedns of accuracy, sensitivity, specificity arrégision are tested

and analysed on a publicly available DRIVE database
KEYWORDS: DRIVE Database, Graph-Cut Method, Retinal Struct\iessel Segmentation

INTRODUCTION

In modern ophthalmology, acquired retinal imageswsed for the detection and diagnosis of vasdalitmrders
and maladies identified with an eye. Unfortunatehgny patients remain undiagnosed as loss of visiasften a late
symptom of advanced diabetic retinopathy. Periaglie check-up for diabetic retinopathy screening peavent the
disease. The ophthalmologists acquire and useatetirages to assist in the analysis of anatomitattire. So that the
results of analysis could be used to locate abnid@resain the eye structure and look for a changkesions while diagnose

of the disease.

Morphological features of retinal blood vesselslilength, diameter and tortuosity have pertinendgé the
disease diagnose and can be used to predict thesstd diseases [1] such as glaucoma, diabetinopsihy, vein
occlusion and hypertension. But in some medicaliegons like detection of pathological elemenk®elhaemorrhages
and neovascularization, the vascular structure rbesexcluded to facilitate the analysis and disediagnosis [2].

Consequently there is a need for exact segmentatiblood vessels from retinal images.

Manual delineation could be employed by ophthalmisiis for analysing morphological features of véacu
network and shape of optic disc from retinal imad#st this approach is unsubstantial and unfeasiBézause it is a
highly skilled task and requires well instructedftunreliable when the morphology of vascularweek is complex,
tedious when number of images to be analyzed age,leven susceptible to errors, time-consuming,expensive. As a
consequence there is a need for reliable autonsytgem for the segmentation of vascular network @gptet disc from

retinal images such that vessel and optic discadheristics are preserved for further analysis.

The automated segmentation method performs autosegimentation of the vascular network and thec ajisic.
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With this automation, ophthalmologists can exanfaegures of retinal structures and efficiently pemi mass screening
exams for diagnosis as well as treatment of retiidases. This could prevent vision diminutiorscugar disorders and
cardiovascular diseases. The automated segmentattbnique is a cost effective method, which cadge time, and
even reduces the stress of ophthalmologist. Therefte automated system supports ophthalmologistissect huge

dataset of retinal images in a methodical mann#r thie high precision within a short span.

Motivation

Numerous segmentation techniques have been reportde literature for the delineation of retinaseular
network. But acquisition of retinal images underyirag illuminations, resolution, angle of capturedaissue overlapping
in retinal images lead to considerable degradatiothe performance of automated segmentation afalestructures.
Hence there is always a room for improvement wétspect to design of segmentation algorithm. Speciakideration
must be taken while choosing automated segmenttgitimique such that the corresponding techniqoeigs precise
segmentation results. As a consequence researohémiag carried out to design robust algorithm degmentation of

retinal blood vessels.
Objective

In the proposed method, automated technique isepted for the delineation of retinal structure sashvessel
networks from retinal images. The overall segmémtagystem of retinal structures is shown in Figurén the first stage,
retinal images of database are pre-processed &nobbhanced binary image. Later vascular netwadegmented from
retinal images by employing graph-cut techniques Ppkrformance metrics of proposed method are exahimterms of

accuracy, sensitivity, specificity and precisionpublicly available DRIVE database.
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Vessel Segmentation

Figure 1: Segmentation System of Retinal Vasculater
Literature survey

There are two main approaches considered for tetraaculature segmentation: Pixel processing based
techniques and Tracking based techniques. The rpaaface metrics of the following surveyed papers pablicly
available STARE and DRIVE datasets are tabulatéichivie 1.

Pixel Processing Based Methods

Pixel processing based methods are two-stage agpmea The principal stage involves a mechanism of
enhancement, where filters are used to intensiéyabpect of blood vessels in the retinal images Sdctond step is
validation of vessel pixels, where thinning or loimg techniques are applied to characterize tkel pis either vessel or
non-vessel. This type of approach processes eatleary pixel of an image to resolve whether thegaring pixel fits

in with blood vessels.

Chaudhuri et al.in [3] presented the concept of matched filtertfa recognition of blood vessels as ‘segments’.
Twelve different kernels and templates were empmloye look for all vessel segments along all the cedrable
orientations. Validation of segments was basedhoesholding. This method retains computational $titp because of
employing thresholding based edge operations. lBsystem takes long time for execution becausargé kernel size.
Hoover et al.in [4] employed a set of twelve directional keswahd then applied piecewise threshold-probingriecie
for vessel segmentation. This method reduces fadsitives by 15 times than conventional threshgdif MFR. But
connectedness property isn’'t captured, so it failgalidate vessels in small group in the formsaaflated pixels in retinal

images.Staal et al.in [5] proposed a supervised technique called rogged or primitive-based technique for vessel
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segmentation. This method is in view of the propénat the vessels are prolonged structures. iitsegnto missing or

erroneous vessel branch detection mostly whilectiagesmall vessels and over or under vessel segti@m which would

affect the performance of systems while determiningth of vesselsMendonca et ai.in [6] presented a framework to

extract blood vessels by detecting vessel ceng®liAlgorithm was mainly divided into three stepee-processing phase,

Vessel centerline detection phase, and Vessel sdgtimn phase. But it results into under segmemtatdr few vessel

segments due to intensity variation in the vessgions.B. Zhang et al.in [7] proposed a method by combining First

Order Derivative of Gaussian with Matched FilterRNMMODG). Retinal image response to Matched FilddF)(was

thresholded to detect the vessels, while threshad tuned by image response to First Order DevigaGaussian
(FODG). This method reduces false detections cateetdMatched Filter (MF) and detects many fineseds.

Tracking Based Methods

Tracking or Tracing based methods use a singlesipgroach. It starts by locating the vessel pdorts$racing

the vascular network, by assessing image propefhes image feature’s extraction and the recogmitibvasculature are

simultaneously performed. Localization of the mlitvessel point can be manual or automatic. Inntlaaual tracing, the

user selects the initial vessel point and they galyeprovide accurate vessel segmentation. Inatl®matic tracing, the

initial vessel point is automatically selected lyogithm, which utilizes a Gaussian function to id@erise a vessel profile

model to head forward and segment a vessel, whieltc@mputationally efficient and more preferable rfetinal image

processing.

Zhou et al in [8] presented an algorithm based on matchedrfidipproach paired with the prior information

about properties of blood vessels. This methodctieteessel boundaries automatically, track cemieatif vessel and thus

segment blood vessels. This method provides impnew¢ on accuracy of diameter measurement of veskedsto

Gaussian fittings. But it results into Missing detvessels that underlay or overlay on the maiselashich are almost

perpendicular to each othédartinez-Perez et aiin [9] proposed a technique based on second diretiderivative of

image intensity. The features obtained at multiphels derived from image derivatives were emplojedwo stage

region growing procedure for progressive segmemmatf the blood vessels. This method overcomesirtensity

variations in retinal images while segmentatixio. et al. in [10] presented a method combining the trackingwgh

technique and the adaptive local thresholding ntefoo retinal blood vessel segmentation. This meétbmployed local

thresholding and extracted large connected compsrasvessels. Tracking growth technique was tipgfieal to thin

vessels to frame entire vascular network. This oetthvercomes the variations in contrast betweeageland thin vessels.

Table 1: Performance Metrics of Vessel Segmentatiddethods

Methods STARE Dataset DRIVE Dataset
Accuracy TPR | Accuracy TPR
Chaudhuri et ai. 0.9384 0.6134 - -
Hoover et al. 0.9267 0.6751 - -
Staal et al. 0.9541 0.6970 0.9442 0.7194
Mendonca et al. 0.9440 0.6996 0.9452 0.7344
Zhang et al. 0.9484 0.7177 0.9382 0.7120
Martinez-Perez et al. 0.9181 - - -

BLOOD VESSEL SEGMENTATION

Segmentation of blood vessels involves two steps-plPocessing and
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segmentation algorithm is initialized by Pre-praieg, which consists of Adaptive Histogram Equdla (AHE) and
pruning followed by Graph-cut method. It is illusted in the Figure. 2.

Pre—_processing

Retinal color
image
Green Adaptive histogram
. — | Prunin
channel equalizer &
Vascular network Maxflow Graph cut

Segmentation

Figure 2: Block Diagram of Vessel Segmentation
Pre-Processing

Initially the green component image is extracteghfrthe retinal colour image which generates intgrisverted
image as shown in the Figure 3 (d). Then the Cehtmmhancement adaptive histogram equalizer iseabf the resultant

image followed by the pruning process as showheénRigure 2.
Adaptive Histogram Equalization (AHE)

Image enhancement is performed by an adaptivegnaioequaliser equation which is given by:
SO0 -10p7 o

Ienhancea = (EFrER':'FI:' T] . M (1)

Where h denotes Window or Block size, r denotesti@imthe level of enhancement, M is Maximum intgns
value in the image (255), apd = R{p) is the Square window of the length h. | denotese@Brcomponent of retinal colour
image, p is a Pixel, jis neighborhood pixels around p witl{p) —1(p'} ) =4,

1, d=10

Where, s(d) = { 2

a, elze

Initially the image to be enhanced is divided ibtocks with the block size of ‘h’. Experimentaliyye value of
block size (h) is found to be 5. Hence number otks$ in an image of size (m X n) is (m/h + n/h) leeting the fractional
part. For example, image of size (580 X 560) cdssi$ (580/5 + 560/5) = 228 blocks. Centre pixg) 16f a block is
subtracted with neighborhood pixels ') pThen the value of s(d) is decided based on &per equation 2. Arithmetic
operations are applied further as per the equdtjsuch that intensity level of each block of aadgm is inverted. These
steps are repeated for every block of an imagéatthe image is enhanced as shown in the Fig8rerBe parameter ‘r’
controls the level of enhancement such that thérasinbetween vessel pixels and background is @&se by increasing

the value of ‘r'.
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Pruning

As shown in the Figure 2, binary morphological @piens or filters are applied to prune the enharinebe,
which eliminates all the misclassified pixels. Tteéshnique effectively reduces the false positimed aids to enhance the
performance of segmentation as shown in the FigufEhe resulting pruned image will be used for ¢amsion of the
graph, which is a major step of vessel segmentafiggure 3 (b), (c), (e), (f) shows the resultedhamced and pruned
images with varying values of ‘h’, ‘r’. From the sdrvation, it can be interpreted that the perforreanof segmentation
increases with the increase in values of window kiand r.

Input Retinal Image Enhanced image

Pruned image

(©

Diilai s Gissn EaBaTEt Enhanced image Pruned image

(d) (e) ()

Figure 3: (a) Retinal Colour Image, (b) Enhanced Image with h=3, r=6,, (c) Pruned Image with h=3, r=6(d) Green
Channel Image of Retinal Colour Image, (e) Enhancetinage with h=5, r=6 (f) Pruned Image with h=5, r=6

Graph-Cut Technique

Graph-cut technique has wide range of applicatiogeigmentation of an object from the imagdghis technique
is characterised by an optimisation operation idéehto minimize the energy generated from a giveage. This energy
defines the correlation between neighbourhood peahponents in an image. Graph-cut technique islamg in

proposed retinal structure segmentation, similahéowork presented in [18]. Segmentation by gramhtechnique can be
illustrated as shown in the Figure 4.

A graph G (N, E) is defined as a set of nodes (pjX®l' and a set of undirected edges ‘E’, where #uges unite
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neighbouring nodes. The graph incorporates twoueigodes: a foreground terminal (Source ‘S’) andaekground

terminal (Sink ‘T’), where source refers to vegsigkls. It can be illustrated by the Figure 4 (a).

(@) (b) (©)

Figure 4: (a) Image Pixel Connection with Special ddes, (b) Weight Assignments for Edges, (c) Graph«©

Segmentation

An undirected edge ‘E’ incorporates two types oflisected edges: neighbourhood links (n-links) agmininal
links (t-links), where n-links connect neighbourldagauixels of an image and t-links connect image Igixe special nodes
(either S or T). Every pixgg € P (a set of pixels) in the graph contains two t4infp, S} and {p, T} connecting pixel to
each of the terminal, while a couple of neighboginixels {p.q} & N (number of pixel neighbour) is connected by n-

links. Hence:
E=N Upp {{p.5} {p.T}, V=P {5.T}} (3)

An edge e € E is assigned a weight (cost) &, = 0. A cut is defined by a subset of ed¢ges E, where
G(c) = {N,E /C)is isolating the graph into foreground and backgubwith ‘C’ defined as|l C| = ¥. .. W.. Severed
n-links are located at the segmentation boundanrysTtheir aggregate cost represents the cosigafesgtation boundary.
On the other hand, severed t-links representsatiemal properties of segments. Consequently, &mim cost cut results
into the segmentation with a desirable balance éetwregional and boundary properties. Table 1 massigight to the

edges E in the graph [19].

Table 2: Weight Assignments for Edges in the Graph

Edge Weight For
{pa} Bp.a {p.g}eN
ARy (F) | PEP, peFyB
{p, S} (foreground) K PeF
0 PeB
AR, (By) p P, pe FgB
{p, T} (background) K PEF
0 PeB
Where, K=14 max,ep Xpgy Bpg) 4

‘F and ‘B’ represent the subset of pixels selectsdforeground and background respectively. Thesefa P

and B< P such thatFnB = ©.B, ; defines the discontinuity between neighbouring fsixé¢. = 0 is a constant

Q
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coefficient, which is defined in the energy forntida graph. Weight assignments are carried ouafoimage as shown in

the Figure 4 (b), where the link thickness is repreéed unequally to depict their respective weights

The Graph-cut technique is employed in the propesginentation since “it allows the incorporationpobr
knowledge into the graph formulation to guide theodel and hence find the optimal segmentation.” Let
A= (A....A,.... Ap) be binary set of labels assigned to each pixelrf@n image, where /signifies assignments to
the pixel ‘p’ in ‘P’. Subsequently, each assignmapis either in Foreground gFor in Background (B). Accordingly the
segmentation is obtained by the binary vector ‘Addhe constraints imposed on the regional and demynproperties of

vector ‘A’ are derived by an energy formulationtleé graph, which can be defined as:
E(A)=%-R(A) + B(&) ®)

Where the positive coefficienk* denotes the relative importance of regional télikelihoods of foreground and
background) ‘R’ over the boundary term (relationship between hietmrhood pixels) ‘B. the regional term or the

likelihood of the foreground and background terrgiigen by:
RO = T, cpRy (4y) ©)

The regional term R(A) assumes the special peraityassigning pixel ‘p’ to the foreground and baakend,
which can be denoted as,(R;) and R(Bg) respectively. Rp(f) specifies the assignment of pixel ‘p’ to eithbet
Foreground (fj or Background (B. For instance, how the intensity of pixel ‘p’siinto the given intensity models (Ex:
Histograms) of the object and background may berwened by R*), given by the equations 7 and 8 and the boundar

constraints [16] is defined by equation 9 as fodow

R, (F;) = —In Pr(I;["obj") (7)
R, (By) = —In Pr(l,|"bkg") (8)
B(A) = Fpaen Bpg - ©(Ap. 4 9)
Where, ® (Ag.Ag) = { ; ‘a‘Pl'i 4 (10)
Bp.q = exp (_ ::[P:_r-[:qj:) ) distji-p_qﬁ 11

This function penalizes a lot for discontinuitiesteen pixels of similar intensities whleq, - Iq| < o. Butif
pixels are altogether different Whe|r1'ﬂ— IG|::- g, then penalty is small. J§ defines the discontinuity between

neighboring pixels. Its value is large when theepixtensities (J and |) are similar and its value is close to zero when
they are different. The distance dist(p, q) betwiberpixels ‘p’ and ‘q’ also affects the value gf B

Maxflow Algorithm

Maximum flow algorithm routes the flow as much assgible from source (S) to the sink (T) to compute
minimum S-T cuts on the graph. It gradually incesathe flow from source (S) to sink (T) along tliges until enough
edges are found for the boundary (cut) to segretip@téerminals. At the end of algorithm, MaximunoWwl saturates the

graph and the edges thus found are said to beasaduedges which corresponds to Minimum Cut orgthph resulting in
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optimal segmentation as shown in the Figure 4A&er employing this Maxflow algorithm for the grapf an image,

vascular network is segmented from the backgrogrghawn in the Figure 5.

“essel Segmentation by Gragh-Cut

(a) (b)

Figure 5: (a) Retinal Colour Image, (b) Segmented IBod Vessels of Retinal Image
RESULTS AND DISCUSSIONS

It is denoted that True Positives (TP) and Truedtiggs (TN) represents the properly identified eégixels and
background pixels respectively. False Positiveg {fistrates the background pixels which are nkistdy recognized as
vessel pixels and False Negatives (FN) represémrtpixels belonging to a vessel, however errongopstceived as
background pixels. Table 5.2 lists the results efsel segmentation performed on the DRIVE datas@f!ATLAB
environment. The performance measures can be dedimé calculated as follows:

e Accuracy: The accuracy represents the fraction of correettygnized pixels from the image field of perspexctiv
while the detection of vessels.

TP+TN
Accuracy = TPeFpaTHLE 100 (12)

» True Positive Rate (TPR) or Sensitivititfhe True Positive Rate (TPR) represents the fraaifgpixels correctly
identified as vessel pixels.

TP+FM

TPR = Sensitivity = = 100 (13)

» False Positive Rate (FPR)The False Positive Rate (FPR) represents the dracti pixels erroneously identified

as vessel pixels.

PP
FP+TN

FPR = » 100 (14)

» Precision: The precision represents the correctness of prpjhtified vessel pixels out of properly iderdi
pixels in the image field of perspective.

Precision = + 100 (15)

TP+FP

e Specificity: The specificity represents the fraction of pixetsrectly identified as background pixels. It casaal
be represented in terms of FPR as:

-

Specificity = 1 — FPR = =100 (16)

TH+FP

www.iaset.us agi@iaset.us



46
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no Retinal images Vessel segmented images | Performance metrics (%)
Accuracy 92.3923
TPR 50
1 FPR 3.7476
Precision 54.8504
Specificity 96.2524
Accuracy 89.8569
TPR 50
2 s FPR 8.6798
Precision 17.4566
Specificity 91.3202
Accuracy 90.6358
TPR 50
3 FPR 8.4725
Precision 11.4647
Specificity 91.5275
Accuracy 91.2441
TPR 50
4 FPR 7.2061
Precision 20.6805
Specificity 92.7939
Accuracy 91.7540
TPR 50
5 FPR 4.9074
Precision 44.8936
Specificity 95.0926
Accuracy 91.6224
TPR 50
6 FPR 3.5316
Precision 62.2404
Specificity 96.4684
Accuracy 91.8224
TPR 50
7 FPR 3.0322
Precision 66.9828
Specificity 96.9678
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no Retinal images Vessel segmented images | Performance metrics (%)
Accuracy 92.7150
TPR 50
8 FPR 2.9192
Precision 63.6444
Specificity 97.0808
Accuracy 90.8117
TPR 50
9 FPR 41233
Precision 60.0785
Specificity 95.8767
Accuracy 90.8037
TPR 50
10 FPR 4.0109
Precision 61.3036
Specificity 95.9891

Table 4 lists few of the standard retinal imageshef DRIVE database, vessel segmented images,rpenfice
measures: Accuracy, True Positive Rate (TPR), Hadsi#tive Rate (FPR), Precision and Specificityfétenance metrics

are computed as mentioned previously in the sact®se

Average or mean value of Performance metrics calledlfor 40 images of DRIVE database are as follovisch
are plotted in the Figure 6 :

* Mean accuracy = 91.1533 %
*  Mean TPR =50 %

e Mean FPR =5.1844 %

* Mean Precision = 46.079 %

* Mean Specificity = 94.7361 %
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Figure 6: Performance Metrics of Vessel Segmentatio
CONCLUSIONS

Robustness of the segmentation process is cruziakctomplish more precise and proficient compuidech
diagnostic system in ophthalmology. Proposed systehibits an automated algorithm for segmentatibretnal blood
vessels. It is not expected that the automatedéewaorks will supplant the human experts in diagnosither they will
reduce stress and workload of the experts in examiie large number of retinal images. This cadde time and assist
ophthalmologist to analyze huge database of relinagjes in a systematic manner with the high acguwathin a short
span. Although many promising segmentation tectescuave been reported, it is still an open areaeearch with the

aim of replacing human experts.
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